FIGURES

Schematic View of the Sonic Head	8
Typical Cobble-Sized Rock Fragments	10
Sonic Vibration Increases Penetration into Subsurface	12
Reduction in Tip and Sleeve Stress and Total Push Force to Advance Sensors	13
Sonic Cone Penetrometer Test Drive System and Controls	
Site Characterization and Analysis Penetrometer System Truck	
Raman Spectroscopic Equipment in the Cone Penetrometer Truck	
Raman and Fluorescence Spectra	19
Regional Three-Dimensional Contaminant Transport Study in Russia	24
Russian Driller and American Researcher Installing Strata Sampler TM	25
Environmental Measurement While Drilling Technology Demonstration	29
Tracking the Depth of Slant Hole Under Mock Tank Leak Demonstration	
Cesium-137 Measurements Made During Drilling	30
Aerial View of the Alternative Landfill Cover Demonstration Site	32
Acquisition of Laser-Induced Fluorescence Spectra of Indicator Plants	37
FLUTe [™] Membrane Indicating DNAPLs from a Cone Penetrometer Hole	42
Cone Penetrometer Data Plots of Subsurface DNAPL Contamination	43
Data Plots Indicating Subsurface Perchloroethylene and Trichloroethylene	44
Cone Permeameter [™] Hydraulic Conductivity Profiles	47
Hydraulic Conductivity Profiles at Launch Complex at the Cape Canaveral	47
Cone Permeameter™ Taking Multiple Pressure Measurements	48
Portable Data System Calculates the Inferred Permeability in Real Time	49
Subsurface Barrier Validation Using SEAtrace TM Monitoring System	53
Self-Powered Mobil SEAtrace [™] Monitoring System	55
Portable Radioactive Contaminant Sampling System	
Exploded View of Rapid Liquid Sampler Components	58
Fluidic Sampling System for At-Tank Analysis	63
Deployment Platform for the Combined Raman/Electrochemical Noise Sensor	67
Conceptual Design of Automated High-Level Waste Tank Monitoring System	71
Slurry Monitoring Test System Photographs	73
Slurry Monitoring Test System Diagram	76
High-Resolution Spectrometer for Continuously Monitoring Incinerator Emissions	79
System Architecture Capable of Integrating Third-Party Analytical Components	83
Illustration of Portable Real-Time Uranium Survey Tool	
Spectrum Obtained During Inspection of Insulated Drain Lines	90
X-Ray, K-Edge Technology Demonstration	
X-Ray, K-Edge Inspection Head Being Positioned	93
Monitoring Thermal Emission Spectra of Elements in a Molten Glass Stream	96